Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Reference: FG1184). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.
Antipin, M. Yu., Struchkov, Yu. T., Pisareva, S. A., Medved, T. Ya. \& Kabachnik, M. I. (1980). J. Struct. Chem. 21, 644-649.
Carroll, P. J. \& Titus, D. D. (1977). J. Chem. Soc. Dalton Trans. pp. 824-829.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Jones, P. G. (1986). Gold Bull. 19, 46-57, and references therein.
Jones, P. G. (1996). Acta Cryst. C52, 1793-1795.
Jones, P. G. \& Thöne, C. (1992). Acta Cryst. C48, 1312-1314.
Nicolet (1987). Manuals for P3 X-ray Program System. Nicolet Analytical X-ray Instruments, Madison, Wisconsin, USA.
Ruhnau, C. (1992). PhD thesis, Technical University of Braunschweig, Germany.
Schmidbaur, H. (1990). Gold Bull. 23, 11-21.
Schmidbaur, H., Reber, G., Schier, A., Wagner, F. E. \& Müller, G. (1988). Inorg. Chim. Acta, 147, 143-150.

Schmidbaur, H., Wohlleben, A., Wagner, F., Orama, O. \& Huttner, G. (1977). Chem. Ber. 110, 1748-1754.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1991). XDISK. Data Reduction Program. Version 3.11. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1994). XP. Molecular Graphics Program. Version 5.03. Siemens Analytical X-ray Instruments, Madison, USA.

Acta Cryst. (1996). C52, 2399-2402

(cis-1,2-Dichlorovinyl)bis(dimethyl-glyoximato- N, N^{\prime})(pyridine- N)cobalt(III) Chloroform Solvate, $\left[\mathbf{C o}(\mathrm{dmgH})_{2}(\mathrm{py})\right.$ $(\mathrm{CCl}=\mathrm{CHCl})] . \mathrm{CHCl}_{3}$

Peter G. Jones, ${ }^{a}$ Lin Yang ${ }^{b}$ and Dirk Steinborn ${ }^{b}$
${ }^{a}$ Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ${ }^{b}$ Institut für Anorganische Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle, Germany. E-mail:
jones@x-ray36.anchem.nat.tu-bs.de

(Received 14 May 1996; accepted II June 1996)

Abstract

In the title complex, $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{HCl}_{2}\right)\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5}-\right.\right.$ $\mathrm{N})] . \mathrm{CHCl}_{3}$, the Co atom exhibits a distorted octahedral coordination with the two dimethylglyoximate (dmgH)

ligands in equatorial positions [Co-N 1.891 (2)1.897 (3) Å]. The axial positions are occupied by the pyridine (py) and cis-1,2-dichlorovinyl ligands [N -Co-C $179.0(1)^{\circ}$ I, which are nearly coplanar. The CoC 1 distance is $1.958(3) \AA$. The $\mathrm{Co}-\mathrm{N}_{\mathrm{py}}$ bond length of 2.028 (2) \AA indicates a lower trans influence for the dichlorovinyl ligand compared with alkyl ligands.

Comment

Organocobaloximes, $\left[\mathrm{Co}(\mathrm{dmgH})_{2}(L) R\right]\left(\mathrm{dmgH}_{2}\right.$ is dimethylglyoxime, L is an axial base and R is a σ-organo ligand), are not only model complexes for vitamin B_{12} coenzymes (Schrauzer, 1976, 1977; Randaccio, Bresciani-Pahor, Zangrando \& Marzilli, 1989), but have also been widely used for investigations of the reactivity of σ-Co- C bonds and the trans influence of σ-organo ligands (Pattenden, 1988; Sweany, 1995). We report here the molecular structure of the cis-1,2-dichlorovinyl ($R=$ $\mathrm{CCl}=\mathrm{CHCl}$) complex, (1), with pyridine as the axial base L.

(1)

The crystal structure of (1) consists of discrete molecules of the complex $\left[\mathrm{Co}(\mathrm{dmgH})_{2}(\mathrm{py})(\mathrm{CCl}=\mathrm{CHCl})\right]$ and chloroform solvate molecules. The Co atom exhibits distorted octahedral coordination, with four oxime N atom donors in equatorial positions. The two dimethylglyoximato ligands are connected by two strong intramolecular hydrogen bonds [O2..O3 2.501 (4) and $\mathrm{Ol} \cdots \mathrm{O} 42.490(3) \AA$. O . The four $\mathrm{Co}-\mathrm{N}$ bond distances range from 1.891 (2) to 1.897 (3) \AA. These values do not differ significantly from those of other organocobaloximes (Bresciani-Pahor et al., 1985).

The four oxime N atoms are coplanar to within $0.007 \AA$. The Co atom is displaced by $0.010(1) \AA(d)$ from the mean plane towards the pyridine ligand. The two nearly planar dmgH ligands (r.m.s. deviations of 0.023 and $0.024 \AA$ for the $\mathrm{C} 7-\mathrm{C} 10, \mathrm{~N} 3, \mathrm{~N} 4, \mathrm{O} 3, \mathrm{O} 4$ and $\mathrm{C} 3-\mathrm{C} 6, \mathrm{~N} 1, \mathrm{~N} 2, \mathrm{O} 1, \mathrm{O} 2$ planes, respectively) subtend an interplanar angle, α, of $1.3(1)^{\circ}$. The values of d and α are smaller than in the vinyl complex $\left[\mathrm{Co}(\mathrm{dmgH})_{2}(\mathrm{py})\left(\mathrm{CH}=\mathrm{CH}_{2}\right)\right][(2) ; d=0.04 \AA$ and $\alpha=$ 6.3°; Bresciani-Pahor, Calligaris \& Randaccio, 1980] and in many other organocobaloximes (Bresciani-Pahor et al., 1985; Randaccio et al., 1989).

The N5-Co-Cl unit is linear [N5-Co-Cl $\left.179.0(1)^{\circ}\right]$. The dichlorovinyl and pyridine ligands are
nearly coplanar, with an interplanar angle of $2.6(1)^{\circ}$. The plane of the axial ligands is essentially perpendicular to the equatorial plane, bisecting the angles N1-$\mathrm{Co}-\mathrm{N} 4$ and $\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 3$.

The bond lengths $\mathrm{Co}-\mathrm{C} 11.958$ (3) and $\mathrm{Co}-\mathrm{N} 5$ 2.028 (2) \AA are slightly shorter than in complex (2) [1.966 (6) and 2.073 (3) \AA; Bresciani-Pahor et al., 1985] and $\left[\mathrm{Co}(\mathrm{dmgH})_{2}(\mathrm{py})\left\{\mathrm{CCl}=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right)_{2}\right\}\right][(3) ; 1.97$ (1) and $2.05 \AA$; Stotter, Sheldrick \& Taylor, 1975]. The Co-N5 distance of 2.028 (2) Å implies a smaller trans influence for the σ-vinyl ligand $\mathrm{CCl}=\mathrm{CHCl}$ compared with alkyl ligands [$\mathrm{Me}, \mathrm{CH}_{2} \mathrm{CMe}_{3}, \mathrm{Et}, \mathrm{CHMe}_{2} ; \mathrm{Co}-\mathrm{N}$ 2.068 (3)-2.099 (2) A] (Bresciani-Pahor et al., 1985).

The $\mathrm{C}=\mathrm{C}$ distance $[1.324$ (7) \AA] does not differ significantly from the corresponding value in complex (3) [1.37 (2) Å; Stotter et al., 1975]. The angle Co$\mathrm{C} 1-\mathrm{C} 2\left[123.3(3)^{\circ}\right]$ is not far from the ideal value of 120°. In contrast, this angle is $133.0(1)^{\circ}$ in complex (3) (Stotter et al., 1975). Furthermore, $\mathrm{Co}-\mathrm{CH}_{2}-\mathrm{C}$ angles of up to 130° were found in alkylcobaloximes, far from the ideal value of 109°; this was attributed to steric the interaction of bulky organo groups with the equatorial $(\mathrm{dmgH})_{2}$ moiety (Bresciani-Pahor et al., 1985; Randaccio et al., 1989).

Fig. 1. Perspective drawing of (1). Ellipsoids represent 50% probability levels. H atoms and the solvent have been omitted for clarity. Intramolecular hydrogen bonds are indicated as dashed bonds. The minor orientation of the dichlorovinyl ligand is not shown.

Experimental

The method used for the preparation of (1) is analogous to that used for the preparation of other organocobaloximes (Bulkowski, Cutler, Dolphin \& Silverman, 1980; Kemmitt \& Russell, 1982; Sweany, 1995). $\left[\mathrm{Co}(\mathrm{dmgH})_{2}(\mathrm{py})\right]_{2}(0.98 \mathrm{~g}$, $1.33 \mathrm{mmol})$ reacts with $\mathrm{Cl}_{2} \mathrm{C}=\mathrm{CHCl}(0.73 \mathrm{~g}, 5.56 \mathrm{mmol})$ in methanol in the presence of $\mathrm{NaOH}(0.13 \mathrm{~g}, 3.25 \mathrm{mmol})$ to give crystals of $\left[\mathrm{Co}(\mathrm{dmgH})_{2}(\mathrm{py})(\mathrm{CCl}=\mathrm{CHCl})\right]$, which were filtered off, washed with methanol and heptane and
dried in vacuo (yield $0.44 \mathrm{~g}, 70 \%$). Recrystallization from chloroform/heptane afforded crystals of $\left[\mathrm{Co}(\mathrm{dmgH})_{2}\right.$ (py)$(\mathrm{CCl}=\mathrm{CHCl})] . \mathrm{CHCl}_{3}$, (1), suitable for X -ray analysis.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{HCl}_{2}\right)\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}-\right.$
$\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$]. CHCl_{3}
$M_{r}=583.56$
Triclinic
P1
$a=8.1522(12) \AA$
$b=8.8910(8) \AA$
$c=8.9605(8) \AA$
$\alpha=82.552(8)^{\circ}$
$\beta=89.561(4)^{\circ}$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 53 reflections
$\theta=4.6-12.4^{\circ}$
$\mu=1.361 \mathrm{~mm}^{-1}$
$T=173(2) \mathrm{K}$
Tablet
$0.70 \times 0.40 \times 0.20 \mathrm{~mm}$
Brown
$\gamma=63.421$ (4) ${ }^{\circ}$
$V=575.00$ (11) \AA^{3}
$Z=1$
$D_{x}=1.685 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer ω scans Absorption correction:
ψ scans (XEMP; Nicolet, 1987)
$T_{\text {min }}=0.765, \quad T_{\text {max }}=$
0.966

7363 measured reflections
4752 independent reflections
$R_{\text {int }}=0.014$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-9 \rightarrow 9$
$k=-10 \rightarrow 11$
$l=-11 \rightarrow 11$
3 standard reflections monitored every 247 reflections intensity decay: none

4604 observed reflections
$[I>2 \sigma(I)]$

Refinement

Refinement on F^{2}
$R(F)=0.0291$
$w R\left(F^{2}\right)=0.0752$
$S=1.053$
4752 reflections
301 parameters

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0417 P)^{2}\right. \\
& +0.3884 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.018
\end{aligned}
$$

$\Delta \rho_{\text {max }}=0.578 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.707$ e \AA^{-3}
Extinction correction: none
Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Absolute configuration: Flack (1983)
Flack parameter $=0.031$ (11)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=(1 / 3) \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Co	0.33595 (4)	0.69406 (4)	0.49950 (3)	0.01353 (8)
Cl	0.2917 (4)	0.5815 (3)	0.3414 (3)	0.0157 (6)
Cli \dagger	0.3393 (2)	0.36885 (15)	0.38221 (11)	0.0268 (2)
$\mathrm{Cl} 2 \dagger$	0.18816 (13)	0.57030 (12)	0.05584 (9)	0.0285 (2)
C2 \dagger	0.2306 (8)	0.6582 (8)	0.2023 (7)	0.0244 (11)
C11 \ddagger	0.2069 (15)	0.6933 (12)	0.1712 (10)	0.030 (2)
$\mathrm{Cl2}^{\prime} \ddagger$	0.2792 (10)	0.3093 (8)	0.2448 (8)	0.038 (2)
C2' \ddagger	0.323 (5)	0.424 (3)	0.373 (3)	0.029 (9)
C3	0.7068 (4)	0.5019 (4)	0.4844 (3)	0.0225 (6)
C4	0.8985 (5)	0.3635 (5)	0.5154 (5)	0.0332 (8)
C5	0.6547 (4)	0.6529 (4)	0.3730 (3)	0.0216 (6)
C6	0.7911 (5)	0.6800 (5)	0.2722 (4)	0.0333 (8)

C7	$-0.0335(4)$	$0.8849(4)$	$0.5123(3)$	$0.0187(6)$
C8	$-0.2258(5)$	$1.0222(4)$	$0.4804(4)$	$0.0285(7)$
C9	$0.0131(4)$	$0.7332(4)$	$0.6234(3)$	$0.0185(6)$
C10	$-0.1218(5)$	$0.7060(4)$	$0.7201(4)$	$0.0268(7)$
C11	$0.3466(5)$	$0.9785(4)$	$0.6345(3)$	$0.0233(6)$
C12	$0.3695(5)$	$1.0634(4)$	$0.7454(4)$	$0.0328(7)$
C13	$0.4261(5)$	$0.9781(4)$	$0.8904(3)$	$0.0321(6)$
C14	$0.4584(5)$	$0.8120(4)$	$0.9211(4)$	$0.0279(7)$
C15	$0.4344(5)$	$0.7315(4)$	$0.8051(3)$	$0.0210(6)$
O1	$0.5856(3)$	$0.3766(3)$	$0.6637(2)$	$0.0249(5)$
O2	$0.4175(4)$	$0.9062(3)$	$0.2729(3)$	$0.0257(5)$
O3	$0.0889(3)$	$1.0142(3)$	$0.3376(2)$	$0.0240(5)$
O4	$0.2572(3)$	$0.4801(3)$	$0.7231(2)$	$0.0235(5)$
N1	$0.5662(4)$	$0.5030(3)$	$0.5548(3)$	$0.0192(5)$
N2	$0.4838(4)$	$0.7595(3)$	$0.3689(3)$	$0.0180(5)$
N3	$0.1066(3)$	$0.8851(3)$	$0.4431(3)$	$0.0162(5)$
N4	$0.1883(4)$	$0.6262(3)$	$0.6273(3)$	$0.0172(5)$
N5	$0.3771(4)$	$0.8136(3)$	$0.6628(3)$	$0.0183(5)$
Cl3	$0.9307(2)$	$0.02359(14)$	$-0.0822(2)$	$0.0732(4)$
C14	$0.6449(2)$	$0.2803(2)$	$0.0662(2)$	$0.0870(5)$
C15	$0.9845(2)$	$0.2992(2)$	$0.0055(2)$	$0.0747(4)$
C99§	$0.8757(10)$	$0.1678(9)$	$0.0347(8)$	$0.0371(10)$
C99'§	$0.8311(10)$	$0.2351(9)$	$-0.0448(9)$	$0.0371(10)$

\dagger Site occupancy of 0.864 (2). \ddagger Site occupancy of 0.136 (2). § Site occupancy of 0.50 (2).

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

Co-N4	1.891 (2)	C7-C9	1.468 (4)
$\mathrm{Co}-\mathrm{N} 3$	1.894 (2)	C7-C8	1.494 (4)
$\mathrm{Co}-\mathrm{N} 2$	1.895 (2)	C9-N4	1.312 (4)
$\mathrm{Co}-\mathrm{Nl}$	1.897 (3)	C9-C10	1.479 (4)
$\mathrm{Co}-\mathrm{Cl}$	1.958 (3)	$\mathrm{Cl1}-\mathrm{N} 5$	1.362 (4)
Co-N5	2.028 (2)	$\mathrm{C} 11-\mathrm{Cl} 2$	1.384 (4)
$\mathrm{C} 1-\mathrm{C} 2$	1.324 (7)	C12-C13	1.385 (5)
$\mathrm{Cl}-\mathrm{Cl} 1$	1.740 (3)	C13-C14	1.369 (5)
$\mathrm{Cl} 2-\mathrm{C} 2$	1.723 (5)	C14-C15	1.397 (4)
C3-N1	1.301 (4)	C15-N5	1.356 (4)
C3--C5	1.459 (5)	$\mathrm{Ol}-\mathrm{N} 1$	1.341 (3)
C3--C4	1.493 (5)	$\mathrm{O} 2-\mathrm{N} 2$	1.349 (3)
C5--N2	1.285 (4)	$\mathrm{O} 3-\mathrm{N} 3$	1.343 (3)
C5--C6	1.509 (4)	O4-N4	1.343 (3)
C7-N3	1.296 (4)		
N4-Co-N3	81.70 (11)	N3-C7-C8	123.9 (3)
$\mathrm{N} 4-\mathrm{Co}-\mathrm{N} 2$	178.93 (12)	C9--C7--C8	122.5 (3)
$\mathrm{N} 3-\mathrm{Co}-\mathrm{N} 2$	98.47 (11)	N4- $\mathrm{C} 9-\mathrm{C} 7$	111.9 (3)
$\mathrm{N} 4-\mathrm{Co}-\mathrm{NI}$	98.61 (11)	N4-C9-C10	124.4 (3)
$\mathrm{N} 3-\mathrm{Co}-\mathrm{NI}$	179.65 (13)	C7--C9-C10	123.7 (3)
$\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 1$	81.21 (11)	N5-C11-C12	122.4 (3)
$\mathrm{N} 4-\mathrm{Co}-\mathrm{Cl}$	89.63 (11)	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	119.1 (3)
$\mathrm{N} 3-\mathrm{Co}-\mathrm{Cl}$	89.55 (11)	$\mathrm{C} 14-\mathrm{Cl} 3-\mathrm{C} 12$	119.5 (3)
$\mathrm{N} 2-\mathrm{Co}-\mathrm{Cl}$	89.32 (11)	C13-C14-C15	119.3 (3)
$\mathrm{NI}-\mathrm{Co}-\mathrm{Cl}$	90.29 (11)	N5-C15-C14	122.1 (3)
$\mathrm{N} 4-\mathrm{Co}-\mathrm{N} 5$	90.00 (10)	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{Ol}$	121.1 (3)
$\mathrm{N} 3-\mathrm{Co}-\mathrm{N} 5$	89.49 (10)	C3-N1-Co	116.7 (2)
$\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 5$	91.06 (10)	$\mathrm{Ol}-\mathrm{Ni}-\mathrm{Co}$	122.2 (2)
$\mathrm{Ni}-\mathrm{Co}-\mathrm{N} 5$	90.66 (10)	$\mathrm{C} 5-\mathrm{N} 2-\mathrm{O} 2$	120.3 (3)
$\mathrm{Cl}-\mathrm{Co}-\mathrm{N} 5$	179.01 (14)	$\mathrm{C} 5-\mathrm{N} 2-\mathrm{Co}$	116.1 (2)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{Cll}$	117.6 (3)	O2-N2--Co	123.5 (2)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{Co}$	123.3 (3)	C7-N3-O3	121.5 (3)
$\mathrm{Cl} 1-\mathrm{Cl}-\mathrm{Co}$	119.2 (2)	C7-N3-Co	116.2 (2)
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{Cl} 2$	126.7 (4)	O3-N3-Co	122.3 (2)
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 5$	111.8 (3)	$\mathrm{C} 9-\mathrm{N} 4-\mathrm{O} 4$	120.6 (2)
N1-C3-C4	124.0 (3)	C9-N4-Co	116.6 (2)
C5-C3-C4	124.2 (3)	$\mathrm{O} 4-\mathrm{N} 4-\mathrm{Co}$	122.8 (2)
N2-C5-C3	114.1 (3)	C15-N5-Cll	117.7 (3)
N2-C5-C6	123.5 (3)	$\mathrm{Cl} 5-\mathrm{N} 5-\mathrm{Co}$	120.7 (2)
C3-C5-C6	122.4 (3)	$\mathrm{Cll}-\mathrm{N} 5-\mathrm{Co}$	121.6 (2)
N3--C7-C9	113.5 (3)		

The title structure represents one of the extremely rare cases where a synthetic racemate crystallizes in space group $P 1$. Nevertheless, we believe the space group assignment to be correct. The C atom of the solvent is disordered over two equally occupied sites on either side of the Cl_{3} plane.

The alternative chloroform C -atom positions are involved in $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding, with $\mathrm{C} 99 \cdots \mathrm{O} 3(1+x,-1+y$, z) 3.039 (8) and $\mathrm{C} 99^{\prime} \ldots \mathrm{Ol}(x, y,-1+z) 3.062(8) \AA$. The organochlorine ligand is disordered over two sites (related by a ca. 180° rotation about the $\mathrm{Co}-\mathrm{Cl}$ bond), with occupancies of 0.864 (2) and $0.136(2)$; there are no significant geometric differences between the two forms. Analogous disorder was found in complex (2) (Bresciani-Pahor et al., 1980). A system of restraints (244 in all) to bond lengths and angles of the disordered components (command SAME) and to light-atom displacement-parameter components (commands DELU and SIMU) was used to stabilize the refinement. The H atoms on Ol and O 3 were refined freely, methyl groups were refined as rigid groups and all other H atoms were refined using a riding model. The positions of the oxime H atoms were taken from a difference Fourier peak search, but their refinement was unsatisfactory (poor convergence). It is possible that they may be disordered. A referee suggested that split positions be refined, but in view of the noncentrosymmetry and chloroform disorder, we do not believe such an approach would be any more successful.

Data collection: XSCANS (Fait, 1991). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: XP (Siemens, 1994). Software used to prepare material for publication: SHELXL93.

The authors thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support. LY acknowledges the Henan Commission of Sciences for a grant.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: FG1202). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Bresciani-Pahor, N., Calligaris, M. \& Randaccio, L. (1980). J. Organomet. Chem. 184, C53-C56.
Bresciani-Pahor, N., Forcolin, M., Marzilli, L. G., Randaccio, L., Summers, M. F. \& Toscano, P. J. (1985). Coord. Chem. Rev. 63, 1-125.
Bulkowski, J., Cutler, A., Dolphin, D. \& Silverman, R. B. (1980). Inorg. Synth. 20, 127-134.
Fait, J. (1991). XSCANS Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Kemmitt, R. D. W. \& Russell, D. R. (1982). Comprehensive Organometallic Chemistry, Vol. 5, edited by G. Wilkinson, F. G. A. Stone \& E. W. Abel, pp. 1-276. Oxford: Pergamon.

Nicolet (1987). XEMP. Manuals of the X-ray Program System. Nicolet Analytical X-ray Instruments, Madison, Wisconsin, USA.
Pattenden, G. (1988). Chem. Soc. Rev. 17, 361-382.
Randaccio, L., Bresciani-Pahor, N., Zangrando, E. \& Marzilli, L. G. (1989). Chem. Soc. Rev. 18, 225-250.

Schrauzer, G. N. (1976). Angew. Chem. 88, 465-474; Angew. Chem. Int. Ed. Engl. 15, 417-443.
Schrauzer, G. N. (1977). Angew. Chem. 89, 239-251; Angew. Chem. Int. Ed. Engl. 16, 233-244.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1994). XP. Molecular Graphics Program. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Stotter, D. A., Sheldrick, G. M. \& Taylor, R. (1975). J. Chem. Soc. Dalton Trans. pp. 2124-2128.
Sweany, R. L. (1995). Comprehensive Organometallic Chemistry II, Vol. 8, edited by E. W. Abel, F. G. A. Stone \& G. Wilkinson, pp. 1-114. Oxford: Elsevier.

Acta Cryst. (1996). C52, 2402-2404

Chlorobis (η^{5}-methylcyclopentadienyl)-(2,3,4,5,6-pentafluorophenyl)titanium(IV)

Carsten O. Kienttz, Carsten Thöne and
Peter G. Jones*

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany. E-mail: p.jones@tu-bs.de
(Received 23 April 1996; accepted 28 May 1996)

Abstract

The title compound, $\left[\mathrm{TiCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{7}\right)_{2}\right]$, displays distorted tetrahedral geometry at the Ti atom, as is also observed in other bis(cyclopentadienyl) complexes of titanium(IV). The Cl and the Ti atoms lie in the pentafluorophenyl plane, which bisects the interplanar angle between the methylcyclopentadienyl rings.

Comment

The title compound, (I), displays distorted tetrahedral geometry at the metal centre, which is typical for bis(cyclopentadienyl) complexes of titanium(IV) (if the cyclopentadienyl ligands are regarded as being attached through their ring centres $X 1 A$ and $X 1 B$).

(I)

The $X 1 A-$ Til- $X 1 B$ angle of 133.5° lies in the usual range. The value of 100.41 (7) ${ }^{\circ}$ for the $\mathrm{Cl1}-\mathrm{Ti} 1-\mathrm{C} 31$ angle is much greater than the corresponding angles
of ca 94° found in dihalogeno complexes (Clearfield, Warner, Saldarriaga-Molina, Ropal \& Bernal, 1975; Petersen \& Dahl, 1975; Klouras, Nastopoulos, Demakopoulos \& Leban, 1993; Jones, Kienitz \& Thöne, 1994). This may be due to a repulsive interaction between the Fl and Cll atoms, because the Ti and Cl atoms lie in the plane of the pentafluorophenyl ring [with respective deviations of 0.016 and 0.004 (2) \AA, and a mean deviation of the 11 ring atoms from the ring plane of $0.007 \AA$ A], which almost ideally bisects the interplanar angle between the methylcyclopentadienyl rings [$51.08(11)^{\circ}$; the interplanar angle between cyclopentadienyl (Cp) ring 1 and $\mathrm{C}_{6} \mathrm{~F}_{5}$ is $25.86(13)^{\circ}$, and that between Cp ring 2 and $\mathrm{C}_{6} \mathrm{~F}_{5}$ is $25.23(14)^{\circ}$].

Fig. 1. The molecule of the title compound in the crystal. Ellipsoids correspond to 50% probability levels and H -atom radii are arbitrary.

The pentafluorophenyl ring shows a narrowing of the C32-C31-C36 angle to $112.3(2)^{\circ}$, a well known phenomenon associated with this ligand (Jones, 1988).

The methyl groups of the Cp rings are oriented towards the space between the chlorine and pentafluorophenyl groups. The relative conformation of the methylcyclopentadienyl rings is between eclipsed and staggered (although they are not parallel), as can be seen from the $\mathrm{Cl} 6-\mathrm{C} 11 \cdots \mathrm{C} 21-\mathrm{C} 26$ torsion angle of $21.9(3)^{\circ}$ (ideal values: 0° for eclipsed and 36° for staggered).
The $\mathrm{Ti}-\mathrm{Cl}$ bond is slightly shorter than in the dichloro complexes with cyclopentadienyl and methylcyclopentadienyl ligands [2.3340(8) versus 2.359 (2)2.367 (2), average $2.362 \AA$ A] (Clearfield et al., 1975; Petersen \& Dahl, 1975). Similarly, for the Ti-C31 bond, the value of $2.259(2) \AA$ is somewhat smaller than the $\mathrm{Ti}-\mathrm{C}_{\mathrm{Ph}}$ distance in $\left[\mathrm{Cp}_{2} \mathrm{TiPh}_{2}\right]$ of $2.272(14) \AA$ (Kocman, Rucklidge, O'Brien \& Santo, 1971), although

